RNA Controls PolyQ Protein Phase Transitions.

نویسندگان

  • Huaiying Zhang
  • Shana Elbaum-Garfinkle
  • Erin M Langdon
  • Nicole Taylor
  • Patricia Occhipinti
  • Andrew A Bridges
  • Clifford P Brangwynne
  • Amy S Gladfelter
چکیده

Compartmentalization in cells is central to the spatial and temporal control of biochemistry. In addition to membrane-bound organelles, membrane-less compartments form partitions in cells. Increasing evidence suggests that these compartments assemble through liquid-liquid phase separation. However, the spatiotemporal control of their assembly, and how they maintain distinct functional and physical identities, is poorly understood. We have previously shown an RNA-binding protein with a polyQ-expansion called Whi3 is essential for the spatial patterning of cyclin and formin transcripts in cytosol. Here, we show that specific mRNAs that are known physiological targets of Whi3 drive phase separation. mRNA can alter the viscosity of droplets, their propensity to fuse, and the exchange rates of components with bulk solution. Different mRNAs impart distinct biophysical properties of droplets, indicating mRNA can bring individuality to assemblies. Our findings suggest that mRNAs can encode not only genetic information but also the biophysical properties of phase-separated compartments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing a peptidylic inhibitor-based therapeutic approach that simultaneously suppresses polyglutamine RNA- and protein-mediated toxicities in patient cells and Drosophila

Polyglutamine (polyQ) diseases represent a group of progressive neurodegenerative disorders that are caused by abnormal expansion of CAG triplet nucleotides in disease genes. Recent evidence indicates that not only mutant polyQ proteins, but also their corresponding mutant RNAs, contribute to the pathogenesis of polyQ diseases. Here, we describe the identification of a 13-amino-acid peptide, P3...

متن کامل

Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila

Spinocerebellar ataxia type 3 is one of the polyglutamine (polyQ) diseases, which are caused by a CAG-repeat expansion within the coding region of the associated genes. The CAG repeat specifies glutamine, and the expanded polyQ domain mutation confers dominant toxicity on the protein. Traditionally, studies have focused on protein toxicity in polyQ disease mechanisms. Recent findings, however, ...

متن کامل

Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases.

Expanded CAG RNA has recently been reported to contribute to neurotoxicity in polyglutamine (polyQ) degeneration. In this study, we showed that RNA carrying an expanded CAG repeat progressively accumulated in the cell nucleus of transgenic Drosophila that displayed degeneration. Our gene knockdown and mutant analyses demonstrated that reduction of U2AF50 function, a gene involved in RNA nuclear...

متن کامل

Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin.

Expanded polyglutamine (polyQ) tracts are associated with the induction of protein aggregation and cause cytotoxicity in nine different neurodegenerative disorders. Here, we report that ubiquilin suppresses polyQ-induced protein aggregation and toxicity in cells and in an animal model of Huntington's disease. Overexpression of ubiquilin in HeLa cells and primary neurons reduced aggregation of p...

متن کامل

Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates

Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mamma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 2015